3.269 \(\int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=164 \[ \frac {\left (2 a^2 A-3 a b B+A b^2\right ) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}}-\frac {\left (a^2 (-B)+3 a A b-2 b^2 B\right ) \sin (c+d x)}{2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}-\frac {(A b-a B) \sin (c+d x)}{2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2} \]

[Out]

(2*A*a^2+A*b^2-3*B*a*b)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/(a-b)^(5/2)/(a+b)^(5/2)/d-1/2*(A*b-
B*a)*sin(d*x+c)/(a^2-b^2)/d/(a+b*cos(d*x+c))^2-1/2*(3*A*a*b-B*a^2-2*B*b^2)*sin(d*x+c)/(a^2-b^2)^2/d/(a+b*cos(d
*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 164, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2754, 12, 2659, 205} \[ \frac {\left (2 a^2 A-3 a b B+A b^2\right ) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}}-\frac {\left (a^2 (-B)+3 a A b-2 b^2 B\right ) \sin (c+d x)}{2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}-\frac {(A b-a B) \sin (c+d x)}{2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(a + b*Cos[c + d*x])^3,x]

[Out]

((2*a^2*A + A*b^2 - 3*a*b*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(5/2)*(a + b)^(5/2)*
d) - ((A*b - a*B)*Sin[c + d*x])/(2*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) - ((3*a*A*b - a^2*B - 2*b^2*B)*Sin[c
+ d*x])/(2*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2754

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2
)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^3} \, dx &=-\frac {(A b-a B) \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {\int \frac {-2 (a A-b B)+(A b-a B) \cos (c+d x)}{(a+b \cos (c+d x))^2} \, dx}{2 \left (a^2-b^2\right )}\\ &=-\frac {(A b-a B) \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {\left (3 a A b-a^2 B-2 b^2 B\right ) \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {\int \frac {2 a^2 A+A b^2-3 a b B}{a+b \cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2}\\ &=-\frac {(A b-a B) \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {\left (3 a A b-a^2 B-2 b^2 B\right ) \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {\left (2 a^2 A+A b^2-3 a b B\right ) \int \frac {1}{a+b \cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2}\\ &=-\frac {(A b-a B) \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {\left (3 a A b-a^2 B-2 b^2 B\right ) \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {\left (2 a^2 A+A b^2-3 a b B\right ) \operatorname {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right )^2 d}\\ &=\frac {\left (2 a^2 A+A b^2-3 a b B\right ) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{5/2} (a+b)^{5/2} d}-\frac {(A b-a B) \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {\left (3 a A b-a^2 B-2 b^2 B\right ) \sin (c+d x)}{2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.67, size = 157, normalized size = 0.96 \[ \frac {\frac {\left (a^2 B-3 a A b+2 b^2 B\right ) \sin (c+d x)}{(a-b)^2 (a+b)^2 (a+b \cos (c+d x))}-\frac {2 \left (2 a^2 A-3 a b B+A b^2\right ) \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b^2-a^2}}\right )}{\left (b^2-a^2\right )^{5/2}}+\frac {(a B-A b) \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))^2}}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(a + b*Cos[c + d*x])^3,x]

[Out]

((-2*(2*a^2*A + A*b^2 - 3*a*b*B)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(5/2) + ((
-(A*b) + a*B)*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c + d*x])^2) + ((-3*a*A*b + a^2*B + 2*b^2*B)*Sin[c + d
*x])/((a - b)^2*(a + b)^2*(a + b*Cos[c + d*x])))/(2*d)

________________________________________________________________________________________

fricas [B]  time = 0.68, size = 742, normalized size = 4.52 \[ \left [-\frac {{\left (2 \, A a^{4} - 3 \, B a^{3} b + A a^{2} b^{2} + {\left (2 \, A a^{2} b^{2} - 3 \, B a b^{3} + A b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (2 \, A a^{3} b - 3 \, B a^{2} b^{2} + A a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - 2 \, {\left (2 \, B a^{5} - 4 \, A a^{4} b - B a^{3} b^{2} + 5 \, A a^{2} b^{3} - B a b^{4} - A b^{5} + {\left (B a^{4} b - 3 \, A a^{3} b^{2} + B a^{2} b^{3} + 3 \, A a b^{4} - 2 \, B b^{5}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, {\left ({\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d\right )}}, \frac {{\left (2 \, A a^{4} - 3 \, B a^{3} b + A a^{2} b^{2} + {\left (2 \, A a^{2} b^{2} - 3 \, B a b^{3} + A b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (2 \, A a^{3} b - 3 \, B a^{2} b^{2} + A a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) + {\left (2 \, B a^{5} - 4 \, A a^{4} b - B a^{3} b^{2} + 5 \, A a^{2} b^{3} - B a b^{4} - A b^{5} + {\left (B a^{4} b - 3 \, A a^{3} b^{2} + B a^{2} b^{3} + 3 \, A a b^{4} - 2 \, B b^{5}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

[-1/4*((2*A*a^4 - 3*B*a^3*b + A*a^2*b^2 + (2*A*a^2*b^2 - 3*B*a*b^3 + A*b^4)*cos(d*x + c)^2 + 2*(2*A*a^3*b - 3*
B*a^2*b^2 + A*a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 + 2
*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) +
a^2)) - 2*(2*B*a^5 - 4*A*a^4*b - B*a^3*b^2 + 5*A*a^2*b^3 - B*a*b^4 - A*b^5 + (B*a^4*b - 3*A*a^3*b^2 + B*a^2*b^
3 + 3*A*a*b^4 - 2*B*b^5)*cos(d*x + c))*sin(d*x + c))/((a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d*cos(d*x + c)^2
 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*d*cos(d*x + c) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d), 1/2*
((2*A*a^4 - 3*B*a^3*b + A*a^2*b^2 + (2*A*a^2*b^2 - 3*B*a*b^3 + A*b^4)*cos(d*x + c)^2 + 2*(2*A*a^3*b - 3*B*a^2*
b^2 + A*a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) + (2
*B*a^5 - 4*A*a^4*b - B*a^3*b^2 + 5*A*a^2*b^3 - B*a*b^4 - A*b^5 + (B*a^4*b - 3*A*a^3*b^2 + B*a^2*b^3 + 3*A*a*b^
4 - 2*B*b^5)*cos(d*x + c))*sin(d*x + c))/((a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d*cos(d*x + c)^2 + 2*(a^7*b
- 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*d*cos(d*x + c) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d)]

________________________________________________________________________________________

giac [B]  time = 0.79, size = 390, normalized size = 2.38 \[ \frac {\frac {{\left (2 \, A a^{2} - 3 \, B a b + A b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} - b^{2}}} + \frac {2 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4 \, A a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - B a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, A a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + B a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + A b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, B b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 4 \, A a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + B a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, A a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + B a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + A b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, B b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )}^{2}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

((2*A*a^2 - 3*B*a*b + A*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c)
 - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2)) + (2*B*a^3*tan(1/2*d*x
+ 1/2*c)^3 - 4*A*a^2*b*tan(1/2*d*x + 1/2*c)^3 - B*a^2*b*tan(1/2*d*x + 1/2*c)^3 + 3*A*a*b^2*tan(1/2*d*x + 1/2*c
)^3 + B*a*b^2*tan(1/2*d*x + 1/2*c)^3 + A*b^3*tan(1/2*d*x + 1/2*c)^3 - 2*B*b^3*tan(1/2*d*x + 1/2*c)^3 + 2*B*a^3
*tan(1/2*d*x + 1/2*c) - 4*A*a^2*b*tan(1/2*d*x + 1/2*c) + B*a^2*b*tan(1/2*d*x + 1/2*c) - 3*A*a*b^2*tan(1/2*d*x
+ 1/2*c) + B*a*b^2*tan(1/2*d*x + 1/2*c) + A*b^3*tan(1/2*d*x + 1/2*c) + 2*B*b^3*tan(1/2*d*x + 1/2*c))/((a^4 - 2
*a^2*b^2 + b^4)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)^2))/d

________________________________________________________________________________________

maple [B]  time = 0.07, size = 886, normalized size = 5.40 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x)

[Out]

-4/d*b/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2*a/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*A-1/
d/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*A*b^2+2/d/(
a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2*a^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*B+1/d/(a*t
an(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*B*a*b+2/d/(a*tan(
1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*b^2*B-4/d/(a*tan(1/2
*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*A*a*b+1/d/(a*tan(1/2*d*x+
1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*A*b^2+2/d/(a*tan(1/2*d*x+1/2*c
)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*a^2*B-1/d/(a*tan(1/2*d*x+1/2*c)^2-t
an(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*B*a*b+2/d/(a*tan(1/2*d*x+1/2*c)^2-tan(1/
2*d*x+1/2*c)^2*b+a+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*b^2*B+2/d*a^2/(a^4-2*a^2*b^2+b^4)/((a-b)*(a+b
))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*A+1/d*b^2/(a^4-2*a^2*b^2+b^4)/((a-b)*(a+b))^(1/2
)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*A-3/d*b/(a^4-2*a^2*b^2+b^4)/((a-b)*(a+b))^(1/2)*arctan(
tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*B*a

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more details)Is 4*b^2-4*a^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 3.54, size = 248, normalized size = 1.51 \[ \frac {\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (2\,B\,a^2-A\,b^2+2\,B\,b^2-4\,A\,a\,b+B\,a\,b\right )}{{\left (a+b\right )}^2\,\left (a-b\right )}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A\,b^2+2\,B\,a^2+2\,B\,b^2-4\,A\,a\,b-B\,a\,b\right )}{\left (a+b\right )\,\left (a^2-2\,a\,b+b^2\right )}}{d\,\left (2\,a\,b+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (2\,a^2-2\,b^2\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (a^2-2\,a\,b+b^2\right )+a^2+b^2\right )}+\frac {\mathrm {atan}\left (\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a-2\,b\right )\,\left (a^2-2\,a\,b+b^2\right )}{2\,\sqrt {a+b}\,{\left (a-b\right )}^{5/2}}\right )\,\left (2\,A\,a^2-3\,B\,a\,b+A\,b^2\right )}{d\,{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/(a + b*cos(c + d*x))^3,x)

[Out]

((tan(c/2 + (d*x)/2)^3*(2*B*a^2 - A*b^2 + 2*B*b^2 - 4*A*a*b + B*a*b))/((a + b)^2*(a - b)) + (tan(c/2 + (d*x)/2
)*(A*b^2 + 2*B*a^2 + 2*B*b^2 - 4*A*a*b - B*a*b))/((a + b)*(a^2 - 2*a*b + b^2)))/(d*(2*a*b + tan(c/2 + (d*x)/2)
^2*(2*a^2 - 2*b^2) + tan(c/2 + (d*x)/2)^4*(a^2 - 2*a*b + b^2) + a^2 + b^2)) + (atan((tan(c/2 + (d*x)/2)*(2*a -
 2*b)*(a^2 - 2*a*b + b^2))/(2*(a + b)^(1/2)*(a - b)^(5/2)))*(2*A*a^2 + A*b^2 - 3*B*a*b))/(d*(a + b)^(5/2)*(a -
 b)^(5/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________